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Summary. It is possible to describe some aspects of the 3D shape features of 
molecules by characterizing a selection of 2D cross sections (planar curves) of a 
formal molecular surface. In this work we propose a new method to analyze the 
complexity of the shape of planar curves, in particular, to recognize and measure 
their roughness. Our approach provides a discrete "roughness spectrum" of the 
curve, which, in turn, can be characterized by other, simpler shape descriptors. 
The procedure is applied to cross sections of molecular electronic isodensity 
contours, which are classified and compared in terms of their roughness 
measures. 
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1. Introduction 

Some aspects of the three-dimensional shape of molecules can be described by 
appropriately chosen, formal molecular surfaces, such as electronic isodensity 
contours and molecular electrostatic isopotential contours. The characterization 
and comparison of such molecular surfaces is of importance in several areas of 
theoretical and applied chemistry, biochemistry, and pharmacology [1-4]. 

Molecular shapes are often represented in terms of cross sections of such 
molecular surfaces. In this case, the problem of studying of 3D shape is trans- 
formed into a 2D problem: the analysis of a number of planar curves, the cross 
sections. The problem is further simplified if these continuous curves are character- 
ized by applying methods of discrete mathematics, which are often more suitable 
for computer applications. In this work we formalize a discrete characterization of 
molecular surface cross sections. The method uses some graph-theoretical 
notions already discussed in the literature [5], but goes further into the characteriza- 
tion of the roughness of a curve, as measured in terms of its oscillations or 
undulations. The procedure is easily programmable as an algorithm, permitting 
an automatic evaluation of the shape descriptors for a large number of cross 
sections and molecules. This feature is of importance, for example, in computer- 
assisted drug design where studies of molecular similarity are needed. 
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Graph theory has been used to characterize molecular surfaces [6-8] and 
their cross sections [5]. Previous works were based on visibility properties [5, 8], 
i.e., on the condition of special points of the curve (vertices) geeing each other 
[5], or seeing sections of the closed curve from points interior or exterior to it [8]. 
In this work we use distance properties between vertices of the planar curve 
representing the cross section. These distances play a key role in constructing a 
roughness measure for planar curves. Our approach allows one to quantify 
absolute roughness and provides an algorithm to compare cross sections of 
model molecular surfaces. This quantitative characterization is of  potential use in 
the study of correlations between chemical structure and properties such as 
sweetness or odour, which can be related to the roughness of a molecular surface 
[1-3]. 

This work has been organized as follows. In Sect. 2 we define a shape 
descriptor of planar curves. The information is presented in terms of  a formal 
spectrum: the roughness spectrum of a planar curve. Properties of this spectrum 
and some illustrative computations are given in Sect. 3. Section 4 presents a 
one-dimensional roughness measure of a curve, derived from its roughness 
spectrum. This measure involves a further reduction of the original information, 
and it provides an easily computable numerical value to assess degrees of 
similarity between related compounds. This  similarity measure may serve as an 
alternative to earlier choices for measures and degrees of  shape similarity [9-12]. 
Section 5 provides an illustration of the concepts and the technique for several 
cross sections of the electron density function of planar molecules. The molecular 
surfaces of water, ethene, formaldehyde, and formic acid are considered as 
examples. In Sect. 6 we discuss the extension of the method to a number of 
anomalous curves, e.g., sectionally-generated cross sections (i.e., cross sections 
composed from pieces) and nondifferentiable curves. As well, we discuss the 
generalization of this method to 3D surfaces. Conclusions are found in Sect. 7. 

2. Roughness spectrum of a planar curve 

Let C be a non-self-intersecting planar curve, defined by a parametric function 
qS(t) :I---2~, where I is the unit i n t e r v a l , / =  [0, 1]. As for now, we will require 
C to be continuous, twice differentiable, bounded, and of finite arc length, with 
no self-crossings. Let {Is,-} be the set of "vertices" of the curve. This will be 
formed by the initial and final points V0 = q~(0) and VN+ 1 = ~b(1) of  the curve 
(for open curves), and all its N local inflexion points, as discussed in [5]: 

Vi E C, i = 1, 2 . . . .  , N; Vi = qS(ti), (1) 

where {t i } is the corresponding set of parameter values, with t i ~ (0, 1). The local 
system of coordinates is defined by the straight line tangent to the planar curve 
at any given point, and by a direction perpendicular to it, lying on  the same plane. 
By regarding the coordinate along the tangent as the variable and the curve as a 
locally defined function along the other coordinate, all points of C are critical points 
in their corresponding local systems. However, only some of them will be local 
inflexion points in the same coordinate systems. Notice that a curve everywhere 
locally convex will have N = 0; if it is open it will possess two vertices and one if it 
is closed, since the formally designated initial and final points coincide. 

The index of ordering for the vertices is defined by their occurrence along the 
oriented curve. If the curve is open, the initial and final points of the curve, q~(0) 
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Fig. 1. Laboratory frame 
and planar coordinate 
systems for the 
characterization of planar 
curves. (The numbers 1, 2, 
3, 4, and 5 on the oriented 
curve C identify inflexion 
points. Number 0 
corresponds to the initial 
point of the curve and 6 
to the final point) 

and ~b(1), respectively, are considered as formal vertices. We shall discuss below 
the criterion to choose the initial point ~b(0) of  a closed curve. Let 
P(A1, A2, A3, A4) be the plane in 3-space where the curve C is embedded: 

P(AI,A2, A3, A4)={v=(x,y,z)~3R:A~x+A2y+A3z=A4}. (2) 

Let v and u be the two Cartesian variables of  a system of  coordinates spanning 
the plane P, with an arbitrary origin within the plane. The relation between the 
various coordinate systems and the curve C is illustrated in Fig. 1. The equation 
for C can now be written as u = h(v), with h a multi-valued function related to 
~b(t). See also the discussion in [5]. 

Our aim is to measure quantitatively the "roughness" of  the curve C. In our 
interpretation, the roughness will be regarded as a manifestation of the undula- 
tions of  the curve. In all cases, the character of  a differentiable curve as being 
rough or rugged will be given in terms of  its curvature properties. The design of  
a roughness measure appropriate to our needs is based on meeting the following 
intuitive notions: A curve will be rougher if it has more undulations, and for an 
equal number  of  undulations, if they are densely packed and if their amplitudes 
are greater. Recall that all the curves we deal with are smooth, in the sense that 
they are at least twice differentiable. As a consequence, a curve with fewer or 
more damped oscillations will be called "less rough", and the term "not  smooth"  
will be used for curves which are not twice differentiable. 

The vertices of  the curve define the limits of  an undulation, which resembles 
a half-wave [5]. In the case of  sine waves, two consecutive vertices enclose exactly 
a half wave. 

In order to characterize these undulations, two parameters appear naturally: 
the distance between two consecutive inflexion points V/and V~+l, and the arc 
length of  the section of the curve for which they provide end points. We shall 
take the distance between two consecutive inflexion points (or vertices) as: 

i = 0 , 1 , 2  . . . .  ,N,  (3) 
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and the arc length s of the section of the curve between the same two inflexion 
points as: 

f v(ti + 1 ) 
si.i+ 1 = [1 + (dh/dv) z] 1/2 dv. (4) 

dV(t i ) 

Here v(ti) and v(ti+l) are the values of the variable v on plane P for the 
consecutive inflexion points. If  (v(0), h(v(0))) is the initial point of the curve in 
the system of coordinates for the plane P, then So.l denotes the arc length of the 
curve from the initial point to the first inflexion point. Analogously, SN.N+I will 
be the arc length measured from the last inflexion point to the end of the curve 
(v(1), h(v(1))). The total length S of the curve is then S = SO,N+1. Notice that the 
curve is oriented from t = 0 to t = 1; if the curve is closed, the first and last 
vertices coincide, Vo = VN+~. Conventionally, the orientation of a closed curve 
will be chosen as clockwise, as viewed from a point of the positive w axis in a 
right-handed (v, u, w) local coordinate system. 

There is a degree of arbitrariness in the choice of  the starting point 
(v(0), h(v(0))) for closed curves C. A convenient choice is one that makes the 
location of  (v(0), h(v(0))) independent from the placement or orientation of the 
curve in 3-space. A criterion that satisfies this condition would be to take as 
starting point an inflexion point with extremal properties, for example, having 
the largest value for the local third derivative. For  the sake of  simplicity, in this 
work we have resorted to a simpler choice. The starting point will be the 
inflexion point of smallest v value; if there are more than one such inflexion 
points, then we shall choose the one with the smallest u value. This criterion 
provides a starting point which is not invariant if the curve is rotated. However, 
we shall see that many important features of  the shape characterization will not 
depend on this choice. 

Our goal is to characterize the curve by a discrete spectrum, that is, by a 
finite sequence of lines, whose intensity (length) and position will characterize the 
shape features of the curve. Since the main property we seek to characterize is 
the roughness of the curve, the final description will be called a roughness 
spectrum. 

The spectrum is completely specified by expressing the relation between the 
original curve C and the position and intensity of the lines. 

a. Line position. A line will indicate the occurrence of a vertex. The position of 
the i-th spectral line will be given by the arc length of the curve from the starting 
point of the i-th vertex, measured as a fraction of the total arc length of S. The 
position pi of the i-th line, i ~> 0, is then given as: 

1 i 

P' = S k ~=o s~,~ __~. (5) 

Notice that the spectrum has a peak at the end of the interval, that is, for p = 1, 
since the final point VN+I is also considered a vertex. 

b. Line intensity. Our evaluation of the line intensity takes into account two 
competing factors: the accumulation of inflexion points and the amplitude of the 
oscillations. A curve may exhibit a rough section if a large number of vertices 
accumulates in the section, but it would not be rough if the oscillations were 
small. In order to describe these features, one must evaluate the intensities, 
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dependent on parameters determined by at least two inflexion points. We take 
into account these two factors by expressing the intensity of  the i-th line as: 

I; = ,~, o~,, (6) 

where 2; is a factor describing the proximity of  two vertices, and ~o, is a weight 
factor for the amplitude. We shall require the following properties to be satisfied: 

(i) [2,. I ~< 1; 2, -~0 if the (i - 1)-th vertex is infinitely far from the i-th vertex, and 
]2;]--+ 1 if the two vertices are infinitesimally close. 

(ii) I, ~ 0, if 2, -o 0. 

(iii) m, ~> 1; the weight co; will be a minimum (to,. = 1) when the section of  the 
curve joining the V, and V,_ 1 vertices becomes a straight line segment, that is, 
when si_ 1.i = Li_ ~.,. For  more curved segments, ~o, is a greater number. 

There is an infinite number of functions that satisfy the above conditions. We 
shall use a very simple representation. To this end, it is only necessary to 
introduce one more parameter, measuring the overall size of the curve in space. 

Note that a curve can have a very large total length S, but actually occupy 
a very small area on the plane. Let us introduce a parameter LM,  defined as: 

L M  = max{[v(t) -- v(t')[, [h(v(t)) - h(v(t '))]},  t, t '  e I. (7) 

Note that LM is the maximum span of v or u coordinates of the curve in the 
w = 0 plane (i.e., LM is not  a distance between inflexion points). As the curve C 
is then enclosed in a square of  sidelength LM, this parameter provides the bound 
21/2LM for the diameter of  the curve. This parameter has a similar orientation 
dependence as the choice of a starting vertex of loops and it is the yardstick 
against which we shall compare the distances between vertices. A simple choice 
of functions 2i and coi is: 

2, = ( L ~  -- L ,_  ,a ) /LM,  (8.1) 

(O, = S ,_  l . i / L i _  1,,. (8.2) 

The set of values {(p,,/~) } obtained with the above choices specifies a roughness 
spectrum of the curve. Notice that positions and intensities of lines are dimen- 
sionless. This feature allows one to address separately the shape (roughness) and 
size aspects of the description of a molecular surface. 

Note that, since from Eqs. (8) one has i > 0, we have chosen not to define the 
intensity I for the position P0. Accordingly, a closed curve with no inflexion 
points will generate no spectral lines. On the other hand, an open curve with no 
inflexion points will generate one spectral line, resulting from the initial and final 
points of  the curve. Accordingly, closed and open convex curves can be distin- 
guished. Note that, if one reverses the orientation of the curve, the line intensities 
are not affected, and the line positions simply change from p, to 1 - p ; .  In this 
sense, the essential features of the spectrum are not affected, but one can 
nevertheless distinguish two curves differing only in their orientation. 

Figure 2 gives an example of  an arbitrary open curve, where all the 
parameters discussed above are indicated. The drawing at the bottom represents 
qualitatively the corresponding spectrum. 

The intensity Ii, i > 0, is not bounded. Therefore, large oscillations in 
sections where the curve has many inflexion points may lead to very large 
intensities. Curves exhibiting these features are classified as very rough. Figure 3 
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Fig. 2. Curve parameters 
necessary to define the 
lines and intensities of the 
roughness spectrum. 
(Upper diagram shows an 
open curve C; lower 
diagram corresponds to a 
schematic representation of 
the spectrum) 

Fig. 3. Comparison of Ill rob.ass, r 
closed curves with the 

j I same number of inflexion 
points, but different 
undulation patterns 

1 1 
P 

provides an example o f  how the roughness spectrum characterizes two curves 
with different types o f  undulations.  Both curves have the same number  o f  
spectral lines. However,  the curve on the left-hand side is less undulating, and 
hence has peaks with smaller intensity. Al though they have comparable  spacings, 
the different intensities o f  lines indicate that  the curve to the left is less rough. In 
another  section, we discuss a quantitative measure o f  the difference between two 
spectra. 
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Fig. 4. Comparison of 
roughness spectra for 
closed curves with different 
number and location of 
inflexion points 

Figure 4 compares two other closed curves. The curve on the right-hand side 
is rougher, but the roughness pattern varies along sections of the curve. The 
spectrum makes this fact evident since the peaks cluster forming two "bands", 
indicating the presence of two separated rough sections of the curve C. 

We are now in the position to classify and compare planar curves in terms of 
their roughness spectra, completely specified by a set of ordered pairs {(pi, I;)}, 
with i = 1, 2 . . . . .  N + 1. In what follows we discuss some properties of the 
roughness spectra and provide illustrative examples. 

3. Properties of the roughness spectra and some simple examples 

Regarding the comparison of curves, we shall say that two curves C1 and C2 
have identical roughness spectra if they possess the same set {(Pi,/,) }. There are 
a number of properties that follow from the definition of the roughness spec- 
trum. One important property is the following: the roughness spectra remain 
invariant when deforming the curve by multiplying simultaneously the u and v 
coordinates by the same scaling factor (double-scaling operation or "blow-up" 
of the curve). This feature guarantees that our descriptor measures shape, and is 
independent of size. 

The effect of a one-variable scaling on the roughness of the curve varies, 
depending on whether the scaling produces an amplitude or frequency change in 
the undulations, or a contribution of both. For example, the following property 
is found: the lines in the spectra shift with damping since the relative locations 
of inflexion points change. Figure 5 illustrates this behavior. The example shows 
three curves (G,  C2, and C3) withfour inflexion points; the distances between 
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Fig. 5. Shift in spectral lines 
due to damping in the 
oscillations of planar curves 
with the same relative 
location of inflexion points 

inflexion points are the same in the three cases. For  simplicity, we have assumed 
that all spectral lines have the same intensity. However, the curve's oscillation 
between inflexion points becomes damped as one passes from C1 to C3. The 
effect on the spectrum is to shift the second peak (the first depending on an 
actual inflexion point) to a larger value of  the position variable, and all other 
ones to smaller values of  the position variable. The result is that the lines of  the 
spectrum cluster in a more compact  region. Moreover,  the intensity of  the lines 
decreases. A more compact  spectrum with lower intensity lines describes a less 
rough curve. 

In order to illustrate these properties we have considered some analytical 
examples. 

a. Sine waves. The curve is given by u = sin kv, with k a constant, and v defined 
over the interval [0, 2re]. In this case we have LM = 2re. I f  k is an integer number, 
then the curve will have 2k + 1 vertices (inflexion points). Notice that in this 
particular case the initial and final points are also local inflexion points. The 
following elementary results hold (i ~> 1): 

Li.i + 1 = ~ / k ,  

S = 4 k c r ,  

pi = i/2k, 

I i = (2k - 1)~r/~, 

where o- is the following constant: 

1 fo/2 0"-~-~ (1 q - k 2 c o s 2 x ) l / 2 d x .  
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These results show that the spectrum has more lines (and with larger relative 
intensity) when the frequency k increases. Figure 6 (top and middle diagrams) 
illustrates this. A smaller frequency makes the curve less rough. On the other 
hand, a change in amplitude can have a similar effect. The bottom diagram in 
Fig. 6 shows the result of decreasing the amplitude by a half, for the function 
u = sin 4v (middle diagram). The line positions are not affected, but the intensity 
of the peaks decreases by about 40%. The curve becomes less rough if 
its amplitude decreases, while leaving the positions of the inflexion points 
unchanged. 

b. Round-edge cross. This example is a closed curve having alternating concave 
and convex sections. Each section can be represented by an arc of a reference 
circle. The curve is depicted in Fig. 7. Notice the location of the starting point 
of the curve chosen according to our convention. If R is the radius of the 
reference circle, then the following relations hold: 

LM = 6R, 

Li, i+ 1 = 2R, L i+  1,i+2 = 2 ~/2R, 

P2/+1 = (3j + 2)/12, P2j+2=(j+ 1)/4, 

I2j+, = ~z/3, I2j+2 ----- ( 21/2 -- 1/3)=/4, 

where i >/1 and j /> 0. The bottom diagram in Fig. 7 shows the resulting 
spectrum. The distribution of lines clearly reveals the existence of periodicity in 
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Fig. 7. Invariance of the roughness 
spectrum by double scaling~ [Notice 
the periodicity of the spectral lines, 
as a result of the symmetry in the 
round-edge cross] 

the original curve. The curve C2 on the right-hand side of the diagram has been 
obtained from C1 by uniform scaling (contraction). Therefore, the two curves 
have exactly the same spectrum (property mentioned before). 

We discuss below more chemically relevant examples, namely, the character- 
ization of curves representing cross sections of the electron density function of  
molecules. 

4. A simple roughness measure derived from the roughness spectrum 

Although the roughness spectrum conveys the degree of undulation (roughness) 
of  the planar curve in a concise pictorial way, occasionally it is necessary to have 
a simpler, one-dimensional function that describes some of the features of the 
spectrum. We propose one such function here. 

Let us choose a real function 6R, which will be completely determined from the 
roughness spectrum. This function will be called a "roughness measure". In a 
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discrete spectrum this function 6R will play the role similar to a spectrum integral 
of a continuous function I (p) .  

We propose the following definition: 
N 

(~R = E Wi <Ii ) Api , /+I ,  (9 )  
i=o 

where ( / / ) = ( I i  +Ii+1)/2 is the average intensity value for two consecutive 
peaks, Api.i+ 1 is the difference in position of these two peaks, and wi is a weight 
function. This weight function is introduced in order to reduce the contribution 
of two peaks with large separation. The only requirement for wi is:w/--, 1 if 
Ap~.~+ ~ ---> O, with w~ ~ 1. Notice that, with the above definitions, if the spectrum 
becomes continuous (that is, if there are infinitely many lines with infinitesimal 
separation Ap~.;+1 ~ 0 )  then fir reduces to the integral of the function I (p ) ,  for 
0~<p~<l. 

There are infinitely many functions wi that satisfy the above condition. We 
have sought a function that falls rapidly within the interval [0, 1], so that only 
close neighboring lines will give a large contribution to fiR. We have tried a 
number of possibilities; the following appears to be an appropriate choice: 

w; = exp( - Ap~.~+,/( 1 - Api.i+l )). (10) 

In the next section we discuss some constant electron density cross sections 
(closed planar curves), and we compare them in terms of their roughness spectra 
and roughness measures 6R. 

5. Characterization of constant electron density contour fines 

We have considered a number of planar molecules and computed the cross 
section of the total electron density Q in the molecular plane. The molecules are 
studied in their ground states and at their equilibrium geometries. The electron 
density has been computed at an ab initio level using a 3-21G basis set [13]. For 
the sake of simplicity, we present the results for isodensity contours with a single 
value of density. 

We have considered four molecules: water, ethene, formaldehyde, and formic 
acid. The electron density value chosen is 0.0035 a.u. This value defines a density 
contour surface which is a reasonable, "realistic" molecular surface [ 14]. At this 
density value the cross sections are single, closed curves. For larger values of 
density the molecular cross section may be formed by a number of disjoint 
pieces. In this case we have to modify the approach to build the spectrum, since 
one has to proceed from curve to curve when moving along the interval for p. 
This extension is discussed later. 

The four contour lines are shown in Fig. 8. The characterization in terms of 
their roughness spectra appears in Fig. 9. Observe that the spectrum of ethene is 
the one with more peaks, but the spectrum of formic acid exhibits the largest 
intensities. It is here where a roughness measure can provide a simple classifica- 
tion. For these molecules we have obtained the following results: 6R = 0.53, 0.45, 
0.40, and 3.9 × 10 -6, for formic acid, ethene, formaldehyde, and water, respec- 
tively. The very small value of 6R for water describes clearly the almost convex 
character of the planar cross section at Q = 0.0035 a.u. Notice that formic acid is 
the system classified as roughest due to a marked change of curvature of the 
electron density contour. 
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Fig. 8. Cross sections of 
the constant electron 
density contours at the 
molecular plane of several 
molecules. [The density 
value is 0.0035 a.u.; the 
electron density has been 
computed at RHF/3-21G 
ab initio level, for the 
equilibrium geometries. 
The molecules are water, 
ethene, formic acid, and 
formaldehyde] 
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Fig. 9. Roughness spectra 
of the cross sections of the 
molecular electron density 
contours shown in Fig. 8 

Our  p rocedure  provides  a simple descr ip t ion  o f  some o f  the curva ture  
features  tha t  affect the roughness  o f  curves. The  cons t ruc t ion  o f  the spec t rum 
and  its charac te r iza t ion  can be pe r fo rmed  au tomat ica l ly ,  and  the compar i son  o f  
curves becomes  s t ra ight forward .  This a p p r o a c h  m a y  be poten t ia l ly  useful as a 
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tool, integrated with other techniques in studies requiring the assessment of 
molecular shape similarity. 

6. Extensions of  the method 

We comment briefly in this section on the generalization of the procedure to a 
number of situations we have so far excluded. 

Let us consider the case of a cross section C of a surface, formed by a 
number of disjoint pieces (maximum connected components of  C). Suppose C is 
made of  M disjoint sets C;, 1 ~< i ~< M, each of them, in turn, a closed planar 
curve. How does one pass from one curve to another? A simple solution consists 
of ordering them according to some criterion and defining a starting point for 
each Ci. We propose the following procedure, in the spirit of  the choice of  
starting points made before: 

(i) Starting poin t  for the i-th curve: If  the curve has local inflexion points, the 
starting point of  Ci will be the inflexion point with the smallest v value (and, if 
there are other inflexion points with the same v value, then the point with the 
smallest u value will be taken). If  the curve has no local inflexion points (a 
convex curve), then the starting point will be (min v, min h(min v)). 

(ii) Ordering of curves C,.: The index labelling of the curves Ci is chosen in 
increasing order, i = 1, 2 , . . . ,  M, according to the values of min v. If two curves 
have the same min v, then the lowest index i is assigned to the connected 
component showing the smallest h(min v) value. 

With these definitions, the spectrum is constructed by joining the spectra 
for each piece Ci. The overall length S is taken as: S = S ( C I ) +  
S (C2)  + • • " + S ( C M ) ,  for the calculation of the line positions; however, the 
calculation of intensities is performed independently for each curve at a time. 

Figure 10 illustrates how this is accomplished. The figure shows a cross 
section formed by four disjoint closed curves. To construct the roughness 
spectrum one passes successively from C1 to C2, C2 to C3, and so forth. The 
bottom diagram in the figure represents the roughness spectrum, indicating the 
contributions from each connected component Ci. No t i ce  that C3, being a 
convex curve, does not contribute with any line to the spectrum. 

The approaches just discussed are all based on the fact that the curves are 
everywhere twice differentiable. With this condition it is possible to define 
vertices on the curve as inflexion points. However, these ideas can be extended to 
other types of  curves. For example, if the curve is everywhere differentiable, 
except at a finite number of points, these points could be taken as the vertices of 
the curve. This approach can be useful to describe cross sections of fused-sphere 
surfaces, e.g., van der Waals surfaces. These molecular surfaces have cross 
sections which are locally convex, except for a finite number of  points where the 
curves are not differentiable (points belonging to two or more atomic spheres). 

Another definition of vertices of  a planar curve can be of interest for some 
other applications. For example, the definition of { Vi } as the set of  points where 
the local second derivative is an extremum (instead of zero local second 
derivative) can be useful. This approach would differentiate among convex 
curves, which otherwise will always be 'unrough', due to their lack of local 
inflexion points. 
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Fig. 10. Roughness spectrum of a cross section 
formed by a number of disjoint closed curves. (The 
starting point for each curve is the inflexion point 
with smallest v and smallest u values. If no inflexion 
point is found, as for the curve C3, the origin is 
given as (min v, min h(min v)). The dashed-line 
rectangle identifies the domain in the u, v-plane where 
the cross section C is enclosed. The dotted vertical 
lines indicate the smallest v values for every curve, 
which gives the ordering to label the curves as CI, 
C 2 ,  C 3 ,  and C4. The curves contribute to the 
spectrum according to this ordering. Notice that C3 
does not contribute with any line) 

A further aspect can be explored. Our  roughness  measure characterizes a 
cross section, which is a 1D object. The description o f  roughness in a 2D surface 
is a more  complicated task, but  it nevertheless can be accomplished by an 
extension of  our  approach.  To this end, we can consider the infinitely-many cross 
sections o f  a surface obtained by slicing it with parallel planes. The choice o f  the 
normal  vector o f  these planes introduces a direction dependence. Let dh be the 
distance between two o f  such planes, and h = 0 and h = H two values o f  a height 
variable specifying the location o f  two parallel planes between which the actual 
surface is found. For  each cross section one gets a roughness spectrum {(Pi, Ii)} 
and a direction-dependent roughness measure 6R(h), deduced f rom it. In  princi- 
ple, a characteristic funct ion describing some roughness features o f  the surface 
can be calculated as: 

= .tl H 6R(h) dh. (11) 

Equat ion  (11) can be evaluated numerically. Examples o f  these and similar 
generalizations will be discussed elsewhere. 

7. Conclusions 

We have proposed  a mathematical  approach  to define a degree o f  ' roughness '  in 
planar,  differentiable surfaces. The procedure uses the changes in curvature along 
the cross section to derive a discrete spectrum which characterizes in a concise 
manner  some of  the shape features related to roughness. Moreover ,  some 
essential informat ion contained in the roughness spectrum can be represented by 
a simple one-dimensional function (the roughness measure 6R). This function 
provides a criterion to classify cross sections according to roughness in terms of  
a single number.  Furthermore,  the integration o f  6R over all parallel cross 
sections o f  a molecular surface may  serve as a direction-dependent criterion to 
assess roughness for 3D surfaces. 
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It must be mentioned that other approaches to describe the roughness of  
curves can be followed. For example, a measure can be defined as the one 
minimized by a spline curve. This measure could be seen, approximately, as the 
average over the whole length of  C of  the root square curvature at each point of  
C. This measure could also easily be made scale invariant. 

These quantitative measures can be useful for testing some theories propos- 
ing a correlation between "molecular roughness" and macroscopic properties, 
such as sweetness or odour. 
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